3.2608 \(\int \frac {(5-x) \sqrt {3+2 x}}{\sqrt {2+5 x+3 x^2}} \, dx\)

Optimal. Leaf size=138 \[ -\frac {2}{9} \sqrt {2 x+3} \sqrt {3 x^2+5 x+2}+\frac {5 \sqrt {-3 x^2-5 x-2} F\left (\sin ^{-1}\left (\sqrt {3} \sqrt {x+1}\right )|-\frac {2}{3}\right )}{9 \sqrt {3} \sqrt {3 x^2+5 x+2}}+\frac {101 \sqrt {-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt {3} \sqrt {x+1}\right )|-\frac {2}{3}\right )}{9 \sqrt {3} \sqrt {3 x^2+5 x+2}} \]

[Out]

101/27*EllipticE(3^(1/2)*(1+x)^(1/2),1/3*I*6^(1/2))*(-3*x^2-5*x-2)^(1/2)*3^(1/2)/(3*x^2+5*x+2)^(1/2)+5/27*Elli
pticF(3^(1/2)*(1+x)^(1/2),1/3*I*6^(1/2))*(-3*x^2-5*x-2)^(1/2)*3^(1/2)/(3*x^2+5*x+2)^(1/2)-2/9*(3+2*x)^(1/2)*(3
*x^2+5*x+2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {832, 843, 718, 424, 419} \[ -\frac {2}{9} \sqrt {2 x+3} \sqrt {3 x^2+5 x+2}+\frac {5 \sqrt {-3 x^2-5 x-2} F\left (\sin ^{-1}\left (\sqrt {3} \sqrt {x+1}\right )|-\frac {2}{3}\right )}{9 \sqrt {3} \sqrt {3 x^2+5 x+2}}+\frac {101 \sqrt {-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt {3} \sqrt {x+1}\right )|-\frac {2}{3}\right )}{9 \sqrt {3} \sqrt {3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Int[((5 - x)*Sqrt[3 + 2*x])/Sqrt[2 + 5*x + 3*x^2],x]

[Out]

(-2*Sqrt[3 + 2*x]*Sqrt[2 + 5*x + 3*x^2])/9 + (101*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*Sqrt[1 + x]]
, -2/3])/(9*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2]) + (5*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3]*Sqrt[1 + x]],
-2/3])/(9*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m
 - 1)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m*(c*e*f + c*d*g - b*e*g) + e*(p
 + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
 b*d*e + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
&&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(5-x) \sqrt {3+2 x}}{\sqrt {2+5 x+3 x^2}} \, dx &=-\frac {2}{9} \sqrt {3+2 x} \sqrt {2+5 x+3 x^2}+\frac {2}{9} \int \frac {77+\frac {101 x}{2}}{\sqrt {3+2 x} \sqrt {2+5 x+3 x^2}} \, dx\\ &=-\frac {2}{9} \sqrt {3+2 x} \sqrt {2+5 x+3 x^2}+\frac {5}{18} \int \frac {1}{\sqrt {3+2 x} \sqrt {2+5 x+3 x^2}} \, dx+\frac {101}{18} \int \frac {\sqrt {3+2 x}}{\sqrt {2+5 x+3 x^2}} \, dx\\ &=-\frac {2}{9} \sqrt {3+2 x} \sqrt {2+5 x+3 x^2}+\frac {\left (5 \sqrt {-2-5 x-3 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 x^2}{3}}} \, dx,x,\frac {\sqrt {6+6 x}}{\sqrt {2}}\right )}{9 \sqrt {3} \sqrt {2+5 x+3 x^2}}+\frac {\left (101 \sqrt {-2-5 x-3 x^2}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {2 x^2}{3}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {6+6 x}}{\sqrt {2}}\right )}{9 \sqrt {3} \sqrt {2+5 x+3 x^2}}\\ &=-\frac {2}{9} \sqrt {3+2 x} \sqrt {2+5 x+3 x^2}+\frac {101 \sqrt {-2-5 x-3 x^2} E\left (\sin ^{-1}\left (\sqrt {3} \sqrt {1+x}\right )|-\frac {2}{3}\right )}{9 \sqrt {3} \sqrt {2+5 x+3 x^2}}+\frac {5 \sqrt {-2-5 x-3 x^2} F\left (\sin ^{-1}\left (\sqrt {3} \sqrt {1+x}\right )|-\frac {2}{3}\right )}{9 \sqrt {3} \sqrt {2+5 x+3 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.31, size = 188, normalized size = 1.36 \[ -\frac {4 \left (9 x^3-123 x^2-224 x-92\right ) \sqrt {2 x+3}+104 \sqrt {5} \sqrt {\frac {x+1}{2 x+3}} \sqrt {\frac {3 x+2}{2 x+3}} (2 x+3)^2 F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {5}{3}}}{\sqrt {2 x+3}}\right )|\frac {3}{5}\right )-101 \sqrt {5} \sqrt {\frac {x+1}{2 x+3}} \sqrt {\frac {3 x+2}{2 x+3}} (2 x+3)^2 E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {5}{3}}}{\sqrt {2 x+3}}\right )|\frac {3}{5}\right )}{27 (2 x+3) \sqrt {3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((5 - x)*Sqrt[3 + 2*x])/Sqrt[2 + 5*x + 3*x^2],x]

[Out]

-1/27*(4*Sqrt[3 + 2*x]*(-92 - 224*x - 123*x^2 + 9*x^3) - 101*Sqrt[5]*Sqrt[(1 + x)/(3 + 2*x)]*(3 + 2*x)^2*Sqrt[
(2 + 3*x)/(3 + 2*x)]*EllipticE[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5] + 104*Sqrt[5]*Sqrt[(1 + x)/(3 + 2*x)]*(3
+ 2*x)^2*Sqrt[(2 + 3*x)/(3 + 2*x)]*EllipticF[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5])/((3 + 2*x)*Sqrt[2 + 5*x +
3*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.64, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {2 \, x + 3} {\left (x - 5\right )}}{\sqrt {3 \, x^{2} + 5 \, x + 2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(1/2)/(3*x^2+5*x+2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(2*x + 3)*(x - 5)/sqrt(3*x^2 + 5*x + 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {\sqrt {2 \, x + 3} {\left (x - 5\right )}}{\sqrt {3 \, x^{2} + 5 \, x + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(1/2)/(3*x^2+5*x+2)^(1/2),x, algorithm="giac")

[Out]

integrate(-sqrt(2*x + 3)*(x - 5)/sqrt(3*x^2 + 5*x + 2), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 136, normalized size = 0.99 \[ \frac {\sqrt {2 x +3}\, \sqrt {3 x^{2}+5 x +2}\, \left (-360 x^{3}-1140 x^{2}-1140 x -101 \sqrt {2 x +3}\, \sqrt {15}\, \sqrt {-2 x -2}\, \sqrt {-30 x -20}\, \EllipticE \left (\frac {\sqrt {30 x +45}}{5}, \frac {\sqrt {15}}{3}\right )+106 \sqrt {2 x +3}\, \sqrt {15}\, \sqrt {-2 x -2}\, \sqrt {-30 x -20}\, \EllipticF \left (\frac {\sqrt {30 x +45}}{5}, \frac {\sqrt {15}}{3}\right )-360\right )}{1620 x^{3}+5130 x^{2}+5130 x +1620} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)*(2*x+3)^(1/2)/(3*x^2+5*x+2)^(1/2),x)

[Out]

1/270*(2*x+3)^(1/2)*(3*x^2+5*x+2)^(1/2)*(106*(2*x+3)^(1/2)*15^(1/2)*(-2*x-2)^(1/2)*(-30*x-20)^(1/2)*EllipticF(
1/5*(30*x+45)^(1/2),1/3*15^(1/2))-101*(2*x+3)^(1/2)*15^(1/2)*(-2*x-2)^(1/2)*(-30*x-20)^(1/2)*EllipticE(1/5*(30
*x+45)^(1/2),1/3*15^(1/2))-360*x^3-1140*x^2-1140*x-360)/(6*x^3+19*x^2+19*x+6)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {\sqrt {2 \, x + 3} {\left (x - 5\right )}}{\sqrt {3 \, x^{2} + 5 \, x + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(1/2)/(3*x^2+5*x+2)^(1/2),x, algorithm="maxima")

[Out]

-integrate(sqrt(2*x + 3)*(x - 5)/sqrt(3*x^2 + 5*x + 2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ -\int \frac {\sqrt {2\,x+3}\,\left (x-5\right )}{\sqrt {3\,x^2+5\,x+2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((2*x + 3)^(1/2)*(x - 5))/(5*x + 3*x^2 + 2)^(1/2),x)

[Out]

-int(((2*x + 3)^(1/2)*(x - 5))/(5*x + 3*x^2 + 2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \left (- \frac {5 \sqrt {2 x + 3}}{\sqrt {3 x^{2} + 5 x + 2}}\right )\, dx - \int \frac {x \sqrt {2 x + 3}}{\sqrt {3 x^{2} + 5 x + 2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)**(1/2)/(3*x**2+5*x+2)**(1/2),x)

[Out]

-Integral(-5*sqrt(2*x + 3)/sqrt(3*x**2 + 5*x + 2), x) - Integral(x*sqrt(2*x + 3)/sqrt(3*x**2 + 5*x + 2), x)

________________________________________________________________________________________